Argand diagrams

Argand diagrams are used to represent complex numbers. This representation allows us to see the effects of different moduli and arguments, therefore giving us a new way of denoting complex numbers and allows us to solve equations and inequalities graphically using loci.
Argand diagrams
Argand diagrams look similar to Cartesian diagrams - these are the graphs that you are used to seeing, with an x and y axis. As you have seen in the previous chapter, complex numbers have real and imaginary parts. Argand diagrams have the real part of the complex number, denoted $R e$ on what would be the x axis in a Cartesian diagram, and the imaginary part, $I m$, on the y axis.

The complex number $z=x+i y$ can be represented by the point $P(x, y)$ or the vector $\binom{x}{y}$
: Represent the complex numbers $z_{1}=3+2 i, z_{2}=-4-i$ and $z_{3}=3 i$ on an Argand diagram xample 1: Represent the complex numbers $z_{1}=3+2 i, z_{2}=-4-i$ and $z_{3}=3 i$ on an Argand diagram

The real part of each number tells us the horizontal position and the imaginary part tells us the vertical position, so z_{1} is represented by the point that is 3 across and 2 up, shown by the red dot. z_{2} and z_{3} are denoted by blue and green dots respectively,

By using the vector of a complex number, the addition or subtraction of complex numbers can be shown on the argand diagram Example 2: For $z_{1}=1+3 i, z_{2}$

For $z_{1}+z_{2}$, plot the vectors of z_{1} and z_{2} on the Argand diagram. As with adding vectors, place them 'nose-totail and notice that the resultant vector is the diagonal of the parallelogram formed.

Follow the same process for $z_{3}-z_{4}$, but plot $-Z_{4}$ instead of z_{4}.

odulus and Argument

The modulus of the complex number $z=x+i y$, denoted $|z|$, is the distance from the origin to the point represented by that number on an Argand diagram, and is given by $|z|=\sqrt{x^{2}+y^{2}}$.
The argument of a complex number $z=x+i y$, denoted arg z, is the angle $-\pi \leq \theta \leq \pi$ between the
positive real axis and the line joining the point represented by z to the origin. The argument satisfies positive ereal
$\tan \theta=\underline{y}$
Example 3: Find the modulus and argument of the complex number $z=-3+4$
\qquad

[^0]

To find $|z|$ we need to find the length of the line
connecting the origin and z, which can clearly be do
by Pythagoras' theorem.
To find $\arg z$, we need to find the angle from the
positive real axis to the line connecting the origin and z
Clearly the angle from the
Clearly the angle from the positive to the negative re
axis is π radians, so the angle we are looking for is π
the angle between the line and the negive
$|z|=\sqrt{3^{2}+4^{2}}=5$
$\arg z=\pi-\left(\tan ^{-1} \frac{4}{3}\right)$

It is important to make sure that you find the right angle for the argument- it is not always $\tan ^{-1} \frac{y}{x}$. To ensure that the correct angle is calculated, it is recommended to draw a quick sketch

Modulus-argument form of complex numbers
For a complex number z with $|z|=r$ and $\arg z=\theta$, the modulus argument form of z is
$=r(\cos \theta+i \sin \theta)$
Example 4: Express the complex number $w=2-\sqrt{5} i$ in modulus-argument form

Example 4: Express the complex number $w=2-\sqrt{5}$ in modulus-argument form
Draw a sketch of the complex number on the diagram.
Find the modulus, r, and the argument θ.
Put into modulus-argument form.

Put into modulus-argument form.

$$
w=3(\cos (-0.841)+i \sin (-0.841))
$$

Multiplying and dividing complex numbers in modas is simple using certain results
For any two complex numbers z_{1} and z_{2}

$$
\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|
$$

$$
\begin{gathered}
\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right) \\
\left|\frac{z_{1}}{\mid z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \\
\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg z_{1}-\arg z_{2}
\end{gathered}
$$

Example 5: For $z_{1}=2\left(\cos \frac{4 \pi}{5}+i \sin \frac{4 \pi}{5}\right)$ and $z_{2}=4\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$, find $w=z_{1} z_{2}$ in the forms $r(\cos \theta+i \sin \theta)$ and $x+i y$.

Use the rules for moduli and arguments to find the modulus and argument of $w=z_{1} z_{2}$.	$\begin{gathered} \|w\|=2 \times 4=8 \\ \arg (w)=\frac{4 \pi}{5}+\frac{\pi}{=}=\frac{17 \pi}{15} \\ \text { As }-\pi \leq \theta \leq \pi, \arg (w)=-\frac{13 \pi}{w} . \end{gathered}$
As we have found the modulus and argument of w, it can be put into the form $r(\cos \theta+i \sin \theta)$.	$w=8\left(\cos -\frac{13 \pi}{15}+i \sin -\frac{13 \pi}{15}\right)$
To find w in the form $x+i y$ without a graphical calculator, it can be helpful to draw a quick sketch and use trigonometry. As the angle between the positive rea axis and the line from the origin to the complex number is $\frac{-13 \pi}{15}$, then the angle from the negative real axis to the line is $\frac{2 \pi}{15}$. Otherwise, simply put the expression in a graphical calculator or use known trig expressions to simplify.	

Loci and regions in the Argand diagram

Complex numbers can be used to represent a locus of points on an Argand diagram
Given a complex number $z_{1}=x+i y$, the locus of a points z on an Argand diagram such that $\left|z-z_{1}\right|=r$, is circle with centre (x, y) and radius r
Given two complex numbers $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{y}$, the locus of points z on and Aged diz Such that $z-z_{1}\left|=\left|z-z_{2}\right|\right.$ is the perpendicular bisector of the segment of fine joining z_{1} and z_{2} Given $z_{1}=x+i y$, the locus of points z such that $\arg \left(z-z_{1}\right)=\theta$ is a half-line (a line from but not
z_{1} that extends infinitely) that makes an angle θ with a line from z_{1} that is parallel to the real axis.

Edexcel Core Pure 1
example 6. Given that $|\mathrm{z}-6+3 i|=4$, sketch the modulus of z and find the maximum value of $|z|$ in the interval $(-\pi, \pi)$.

	$\left\lvert\, \begin{array}{c}\|z-(6-3 i)\|=4 \\ \text { Put the loci equation into the form }\left\|z-z_{1}\right\|=r .\end{array}\right.$
Thus, the loci of z is a circle of radius 4, , centred at $(6,-3)$	

sketch the loci.

As shown by the diagram above, the maximum
value of $|z|$ is the second intersection of the line
from the origin through the centre of the circle, C.
${ }^{\text {Im }}$

from the origin through the centre of the circle, $C . \quad|z|_{\text {max }}=4+3 \sqrt{5}$ Complex numbers can also be used to rep
inequality signs and any set notation used

Example 7: sketch the region represented by $0<\arg (z-3-i) \leq \frac{\pi}{3}$
Sketch the loci represented by $\arg (z-3-i)=\frac{\pi}{3}$ and $\arg (z-3-i)=0$.
Thefore the revion represented by $0 \leq \arg (z-3$ i) $\leq \frac{\pi}{1}$ is the shaded region between the two lines

However, the question asks for $0<\arg (z-3-i) \leq \frac{\pi}{3}$ so the half ine representing arg $(z-3-i)=0$ should included.

Example 8: Sketch the region represented by $\{|z-2-2 i| \leq 2 \cap|z-0.5|<|z-1.5|\}$
his question involves the regions $|z-2-2 i| \leq 2$ and $-0.5|<|z-1.5|$. Sketch the regions on separate graphs.
$|z-2-2 i| \leq 2$ represents the interior and bounda
line of the circle centred at $2+2 i$ with radius 2 .
$|z-1.5|<|z-2.5|$ represents the region where the eal value is less than 2 . All the points in this region are closer to $(1,5,0)$ than $(25,0)$.

The' n ' symbol is an intersection symbol-we are ooking for the se of points that satisfy $|z-2-2 i| \leq 2$ ND $|z-1.5|<|z-2.5|$.

[^0]: connecting z to the origin

